B.Sc(H) Sem - I , INTERNAL ASSESSMENT-1 ${ }^{\text {st }}$, 2017-18
 Sub: MATHEMATICS, Course - C1

Full Marks: 10
Answer any five questions:
Time: $\mathbf{3 0} \mathrm{m}$. $(2 \times 5=10)$

1. The envelope of the lines $\frac{x}{a}+\frac{y}{b}=1$ (a, b are variable parameters) is given by $\sqrt{x}+\sqrt{y}=$ \sqrt{k} (k is given constant).Find a relation between a and b .
2. The gradient of one of the straight lines of $a x^{2}+2 h x y+b y^{2}=0$ is twice that of the other. Show that $8 h^{2}=9 a b$.
3. Prove that $\lim _{x \rightarrow 0^{+}}\left(\frac{\sin x}{x}\right)^{\frac{1}{x}}=1$.
4. Solve: $\left(x^{2} y-2 x y^{2}\right) d x-\left(x^{3}-3 x^{2} y\right) d y=0$.
5. Find the translation which transforms the equation $x^{2}+y^{2}-2 x+14 y+20=0$ into $\left(x^{\prime}\right)^{2}+$ $\left(y^{\prime}\right)^{2}-30=0$.
6. If $y=\sin \left(m \sin ^{-1} x\right)$, show that (a) $\left(1-x^{2}\right) y_{2}-x y_{1}+m^{2} y=0$ (b) (1- $\left.x^{2}\right) y_{n+2}-(2 n+$ $1 x y n+1+(m 2-n 2) y n=0$.
7. Let $I_{n}=\int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x$. Prove that $I_{n}=\frac{n-1}{n} I_{n-2(n>1)}$. Hence deduce the value of $\int_{0}^{\frac{\pi}{2}} \sin ^{5} x d x$.

DEPT. OF MATHEMATICS
JHARGRAM RAJ COLLEGE
B.Sc(H) Sem - I , INTERNAL ASSESSMENT-2 ${ }^{\text {nd }}$, 2017-18

Sub: MATHEMATICS, Course - C1
Full Marks: 10
Time: $\mathbf{3 0} \mathrm{m}$.
Answer any five questions: $(2 \times 5=10)$

1. Solve : $\left(1+x^{2}\right) \frac{d y}{d x}+(1-x)^{2} y=x e^{-x}$.
2. Let $I_{m, n}=\int_{0}^{\frac{\pi}{2}} \sin ^{m} x \cos ^{n} x d x, m, n$ being a positive integer greater than 1 . Prove that $I_{m, n}=$ $\frac{m-1}{m+n} I_{m, n-2}=\frac{m-1}{m+n} I_{m-2, n}$.
3. If $I_{n}=\int e^{a x} \cos ^{n} x d x$, Show that $\left(a^{2}+n^{2}\right) I_{n}=e^{a x} \cos ^{n-1} x(a \cos x+n \sin x)+n(n-1) I_{n-2}$, n being a positive integer greater than 1.
4. Find the co-ordinates of the centre and the radius of the circle $x-2 y-2 z+7=0, x^{2}+y^{2}+$ $z^{2}-2 x+6 y+4 z-35=0$.
5. Find the equation of the cone whose vertex is $(1,0,-1)$ and which passes through the circle $x^{2}+y^{2}+z^{2}=4, x+y+z-1$.
6. Show that the curve $y=x^{3}$ has a point of inflexion at $x=0$.
7. Find the Vertical Asymptotes of $y=(a-x)\left(\tan \frac{\pi x}{2 a}\right)$

DEPT. OF MATHEMATICS

JHARGRAM RAJ COLLEGE

B.Sc(H) Sem - I , INTERNAL ASSESSMENT-1 ${ }^{\text {st }}$, 2018-19
 Sub: MATHEMATICS, Course - C1

Full Marks: 10
Time: $\mathbf{3 0} \mathrm{m}$.
Answer any five questions:

1. Let $x=\varphi(t)$ and $y=\mu(t)$, show that $\frac{d^{2} y}{d x^{2}}=\frac{x_{1} y_{2}-x_{2} y_{1}}{x_{1}^{3}}$, where the suffixes denote the order of differentiation with respect to t. Hence obtain $\frac{d^{2} y}{d x^{2}}$, if $x=a(\cos \theta+\theta \sin \theta)$ and $y=$ $a(\sin \theta-\theta \cos \theta)$.
2. State "Leibnitz's Theorem on successive derivatives". Prove that $\left(1-x^{2}\right) y_{n+2}-$ $(2 n+1) x y_{n+1}+\left(m^{2}-n^{2}\right) y_{n}=0$, where $y=\sin \left(m \sin ^{-1} x\right)$ and both m and n are natural numbers.
3. Solve: $\left(x^{2} y-2 x y^{2}\right) d x-\left(x^{3}-3 x^{2} y\right) d y=0$.
4. Solve : $\left(1+x^{2}\right) \frac{d y}{d x}+(1-x)^{2} y=x e^{-x}$.
5. Determine the equation of the Sphere through the circle $x^{2}+y^{2}+z^{2}+6 x-8 y-4 z+4=0, x+2 y+3 z=6$ and through the point $(2,3,1)$.
6. If under an orthogonal transformation the expression $a x^{2}+2 h x y+b y^{2}=0$ changes to $A X^{2}+2 H X Y+B Y^{2}=0$ then Show that $a+A=b+B$.
7. Evaluate $\int_{0}^{\frac{\pi}{2}} \sin ^{4} x \operatorname{cox} x^{8} x d x$, By using Reduction Formula.
8. Evaluate $\int_{0}^{\frac{\pi}{6}} \tan ^{6} x d x$, By using Reduction Formula.

DEPT. OF MATHEMATICS

JHARGRAM RAJ COLLEGE
B.Sc(H) Sem - I , INTERNAL ASSESSMENT-2 ${ }^{\text {nd }}$, 2018-19

Sub: MATHEMATICS, Course - C1

Full Marks: 10
Time: $\mathbf{3 0} \mathbf{m}$. Answer any five questions:

1. Find the point of inflextion, if any, of the curve $x=(\log y)^{3}$.
2. Find the asymptotes of the curve $x^{2} y^{2}-a^{2}\left(x^{2}+y^{2}\right)-a^{3}(x+y)+a^{4}=0$. Also determine the nature of the asymptotes as obtained.
3. Find the length of the arc of the parabola $y^{2}=16 x$ measured from the vertex to an extremity of the latus rectum.
4. Show that the entire area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\pi a b$.
5. Show that the polar equation of the straight line passing through the points $\left(r_{1}, \theta_{1}\right)$ and $\left(r_{2}, \theta_{2}\right)$ is $\frac{1}{r} \sin \left(\theta_{1}-\theta_{2}\right)-\frac{1}{r_{1}} \sin \left(\theta-\theta_{2}\right)+\frac{1}{r_{2}} \sin \left(\theta-\theta_{1}\right)=0$. Hence find the condition of co-linearity of the points $\left(r_{1}, \theta_{1}\right),\left(r_{2}, \theta_{2}\right)$ and $\left(r_{3}, \theta_{3}\right)$.
6. Find the equations of the generators of the hyperboloid $x^{2}-y^{2}=4 z$ which pass through the point (7,5,6).
7. Find the equation of the right circular cone with the vertex at $(1,2,-1)$, semi vertical angle 60° and the axis being $\frac{x-1}{3}=\frac{y+2}{-4}=\frac{z+1}{5}$.
8. Solve : $\frac{d y}{d x}+2 x y=e^{-x^{2}}$.

DEPT. OF MATHEMATICS

JHARGRAM RAJ COLLEGE

B.Sc(H) Sem - I , INTERNAL ASSESSMENT-1 ${ }^{\text {st }}$, 2019-20
 Sub: MATHEMATICS, Course - C1

Time: $\mathbf{3 0} \mathbf{m}$.
Full Marks: 10

1. Starting from $\frac{d x}{d y}=\frac{1}{\frac{d y}{d x}}$ obtain the expressions for $\frac{d^{2} x}{d^{2} y} \& \frac{d^{3} x}{d^{3} y}$.

2. Evaluate $\int \tan ^{5} x d x$, using reduction formula.
3. Evaluate $\int_{0}^{\frac{\pi}{2}} \sin ^{10} x d x$, using Walli's formula.
4. Show that the spheres $x^{2}+y^{2}+z^{2}-2 x+y-3 z+4=0 \& x^{2}+y^{2}+z^{2}-5 x-6 y+$ $2 z-5=0$ cut orthogonally.
5. If under an orthogonal transformation the expression $a x^{2}+2 h x y+b y^{2}=0$ changes to $A X^{2}+2 H X Y+B Y^{2}=0$ then Show that $a b-h^{2}=A B-H^{2}$.
6. Obtain the equation of the sphere having the circle $x^{2}+y^{2}+z^{2}+10 y-4 z-8=0, x+$ $y+z=3$ as the great circle.
7. Solve: $\left(1+x^{2}\right) \frac{d y}{d x}+(1-x)^{2} y=x e^{-x}$.

DEPT. OF MATHEMATICS

JHARGRAM RAJ COLLEGE

B.Sc(H) Sem - I , INTERNAL ASSESSMENT-2 ${ }^{\text {nd }}$, 2019-20
 Sub: MATHEMATICS, Course - C1

Full Marks: 10
Time: $\mathbf{3 0} \mathbf{m}$.
Answer any five questions:

1. Prove that, if $a>0$, then $\lim _{x \rightarrow 0+0} \frac{x}{a}\left[\frac{b}{x}\right]=\frac{b}{a}$ and $\lim _{x \rightarrow 0+0}\left[\frac{x}{a}\right] \frac{b}{x}=0$, where $[x]$ is the greatest integer in x but not greater then x. Discuss the left hand limit of these functions.
2. Examine the asymptotes, if any, parallel to the Y - axis of the curve $x^{2} y^{2}-9 x^{2}+2=0$
3. Find the length of the circumference of the circle $x^{2}+y^{2}=16$.
4. Find the area of the Cardioide $\boldsymbol{r}=\boldsymbol{a}(1-\cos \theta)$.
5. Show that the straight line $r \cos (\theta-\alpha)=p$ touches the $\operatorname{conic} \frac{l}{r}=1+e \cos \theta$ if $(l \cos \alpha-e p)^{2}+l^{2} \sin ^{2} \alpha=p^{2}$.
6. Find the angle between the lines in which $x-3 y+z=0$ cuts the cone $x^{2}-5 y^{2}+z^{2}=0$.
7. Find the equations of the generators of the hyperboloid $x^{2}-y^{2}=2 z$ which pass through the point $(5,3,8)$.
8. Solve: $\frac{d y}{d x}+\frac{y}{x} \ln y=\frac{y}{x^{2}}(\ln y)^{2}$.
