DEPT. OF MATHEMATICS JHARGRAM RAJ COLLEGE B.Sc(H) Sem – I , INTERNAL ASSESSMENT-1st , 2017-18 Sub: MATHEMATICS, Course – C1

Full Marks: 10

Answer any five questions:

Time: 30 m.

 $(2 \times 5 = 10)$

- **01.** The envelope of the lines $\frac{x}{a} + \frac{y}{b} = 1$ (*a*, *b* are variable parameters) is given by $\sqrt{x} + \sqrt{y} = \sqrt{k}$ (k is given constant). Find a relation between a and b.
- **02.** The gradient of one of the straight lines of $ax^2 + 2hxy + by^2 = 0$ is twice that of the other. Show that $8h^2 = 9ab$.
- **03.** Prove that $\lim_{x\to 0^+} \left(\frac{\sin x}{x}\right)^{\frac{1}{x}} = 1.$
- **04.** Solve: $(x^2y 2xy^2)dx (x^3 3x^2y)dy = 0.$
- **05.** Find the translation which transforms the equation $x^2 + y^2 2x + 14y + 20 = 0$ into $(x')^2 + (y')^2 30 = 0$.
- **06.** If $y = \sin(2m \sin^{-1} x)$, show that (a) $(1 x^2)y_2 xy_1 + m^2y = 0$ (b) $(1 x^2)y_{n+2} (2n + 1xy_n + 1 + (m^2 n^2)y_n = 0)$.
- **07.** Let $I_n = \int_0^{\frac{\pi}{2}} \sin^n x dx$. Prove that $I_n = \frac{n-1}{n} I_{n-2 (n>1)}$. Hence deduce the value of $\int_0^{\frac{\pi}{2}} \sin^5 x dx$.

DEPT. OF MATHEMATICS JHARGRAM RAJ COLLEGE B.Sc(H) Sem – I , INTERNAL ASSESSMENT-2nd , 2017-18 Sub: MATHEMATICS, Course – C1

Full Marks: 10

Answer any five questions:

Time: 30 m. $(2 \times 5 = 10)$

01. Solve : $(1 + x^2)\frac{dy}{dx} + (1 - x)^2 y = xe^{-x}$.

- 02. Let $I_{m,n} = \int_0^{\frac{\pi}{2}} \sin^m x \cos^n x dx$, m, n being a positive integer greater than 1. Prove that $I_{m,n} = \frac{m-1}{m+n} I_{m,n-2} = \frac{m-1}{m+n} I_{m-2,n}$.
- 03. If $I_n = \int e^{ax} \cos^n x dx$, Show that $(a^2 + n^2)I_n = e^{ax} \cos^{n-1}x(a\cos x + n\sin x) + n(n-1)I_{n-2}$, n being a positive integer greater than 1.
- 04. Find the co-ordinates of the centre and the radius of the circle x 2y 2z + 7 = 0, $x^2 + y^2 + z^2 2x + 6y + 4z 35 = 0$.
- 05. Find the equation of the cone whose vertex is (1,0,-1) and which passes through the circle $x^2 + y^2 + z^2 = 4, x + y + z 1$.
- 06. Show that the curve $y = x^3$ has a point of inflexion at x = 0.
- 07. Find the Vertical Asymptotes of $y = (a x)(tan\frac{\pi x}{2a})$

DEPT. OF MATHEMATICS JHARGRAM RAJ COLLEGE B.Sc(H) Sem – I , INTERNAL ASSESSMENT-1st , 2018-19 Sub: MATHEMATICS, Course – C1

Full Marks: 10

Answer any five questions:

Time: 30 m.
$$(2 \times 5 = 10)$$

1. Let $x = \varphi(t)$ and $y = \mu(t)$, show that $\frac{d^2y}{dx^2} = \frac{x_1y_2 - x_2y_1}{x_1^3}$, where the suffixes denote the order of differentiation with respect to *t*. Hence obtain $\frac{d^2y}{dx^2}$, if $x = a(\cos\theta + \theta\sin\theta)$ and y =

$$a(\sin\theta - \theta\cos\theta)$$

- 2. State "Leibnitz's Theorem on successive derivatives". Prove that $(1 x^2)y_{n+2} (2n+1)xy_{n+1} + (m^2 n^2)y_n = 0$, where $y = \sin(msin^{-1}x)$ and both *m* and *n* are natural numbers.
- 3. Solve : $(x^2y 2xy^2)dx (x^3 3x^2y)dy = 0$.
- 4. Solve $:(1 + x^2)\frac{dy}{dx} + (1 x)^2y = xe^{-x}$.
- 5. Determine the equation of the Sphere through the circle $x^{2} + y^{2} + z^{2} + 6x - 8y - 4z + 4 = 0, x + 2y + 3z = 6$ and through the point (2,3,1).
- 6. If under an orthogonal transformation the expression $ax^2 + 2hxy + by^2 = 0$ changes to $AX^2 + 2HXY + BY^2 = 0$ then Show that a + A = b + B.
- 7. Evaluate $\int_{0}^{\frac{\pi}{2}} sin^{4}x cox^{8} x dx$, By using Reduction Formula.
- 8. Evaluate $\int_{0}^{\frac{n}{6}} tan^{6} x dx$, By using Reduction Formula.

DEPT. OF MATHEMATICS JHARGRAM RAJ COLLEGE B.Sc(H) Sem – I, INTERNAL ASSESSMENT-2nd, 2018-19 Sub: MATHEMATICS, Course - C1

Full Marks: 10

Answer any five questions:

Time: 30 m. $(2 \times 5 = 10)$

- Find the point of inflextion, if any, of the curve x = (log y)³.
 Find the asymptotes of the curve x²y² a²(x² + y²) a³(x + y) + a⁴ = 0. Also determine the nature of the asymptotes as obtained.
- 3. Find the length of the arc of the parabola $y^2 = 16x$ measured from the vertex to an extremity of the latus rectum.
- 4. Show that the entire area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is πab .
- 5. Show that the polar equation of the straight line passing through the points (r_1, θ_1) and (r_2, θ_2) is $\frac{1}{r}\sin(\theta_1-\theta_2)-\frac{1}{r_1}\sin(\theta-\theta_2)+\frac{1}{r_2}\sin(\theta-\theta_1)=0$. Hence find the condition of co-linearity of the points $(r_1, \theta_1), (r_2, \theta_2)$ and (r_3, θ_3) .
- 6. Find the equations of the generators of the hyperboloid $x^2 y^2 = 4z$ which pass through the point (7,5,6).
- 7. Find the equation of the right circular cone with the vertex at (1,2,-1), semi-vertical angle 60° and the axis being $\frac{x-1}{3} = \frac{y+2}{-4} = \frac{z+1}{5}$.

8. Solve:
$$\frac{dy}{dx} + 2xy = e^{-x^2}$$
.

DEPT. OF MATHEMATICS JHARGRAM RAJ COLLEGE B.Sc(H) Sem – I, INTERNAL ASSESSMENT-1st, 2019-20 Sub: MATHEMATICS, Course - C1

Full Marks: 10

Time: 30 m. $(2 \times 5 = 10)$

Answer any five questions:

- 1. Starting from $\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}}$ obtain the expressions for $\frac{d^2x}{d^2y} \& \frac{d^3x}{d^3y}$.
- 2. If $y = \frac{x^3}{x^2 1}$, then prove that $(y_n)_0 = \begin{cases} 0, \text{ if } n \text{ is even;} \\ -n!, \text{ if } n \text{ is odd;} \end{cases}$ 3. Evaluate $\int tan^5 x \, dx$, using reduction formula.

- Evaluate ∫₀^{π/2} sin¹⁰ x dx, using Walli's formula.
 Show that the spheres x² + y² + z² − 2x + y − 3z + 4 = 0 & x² + y² + z² − 5x − 6y + 2z - 5 = 0 cut orthogonally.
- 6. If under an orthogonal transformation the expression $ax^2 + 2hxy + by^2 = 0$ changes to $AX^2 + 2HXY + BY^2 = 0$ then Show that $ab - h^2 = AB - H^2$.
- 7. Obtain the equation of the sphere having the circle $x^2 + y^2 + z^2 + 10y 4z 8 = 0, x + 10y 4z 8 = 0$ y + z = 3 as the great circle.
- 8. Solve: $(1 + x^2)\frac{dy}{dx} + (1 x)^2 y = xe^{-x}$.

DEPT. OF MATHEMATICS JHARGRAM RAJ COLLEGE B.Sc(H) Sem – I, INTERNAL ASSESSMENT-2nd, 2019-20 Sub: MATHEMATICS, Course - C1

Full Marks: 10 Answer any five questions:

Time: 30 m. $(2 \times 5 = 10)$

- 1. Prove that, if a > 0, then $\lim_{x \to 0+0} \frac{x}{a} \left[\frac{b}{x} \right] = \frac{b}{a}$ and $\lim_{x \to 0+0} \left[\frac{x}{a} \right] \frac{b}{x} = 0$, where [x] is the greatest integer in x but not greater then x. Discuss the left hand limit of these functions.
- 2. Examine the asymptotes, if any, parallel to the Y axis of the curve $x^2y^2 9x^2 + 2 = 0$ 3. Find the length of the circumference of the circle $x^2 + y^2 = 16$.
- 4. Find the area of the Cardioide $r = a(1 \cos \theta)$.
- 5. Show that the straight line $r \cos(\theta \alpha) = p$ touches the conic $\frac{l}{r} = 1 + e \cos \theta$ if $(l\cos\alpha - ep)^2 + l^2 sin^2\alpha = p^2.$
- 6. Find the angle between the lines in which x 3y + z = 0 cuts the cone $x^2 5y^2 + z^2 = 0$.
- 7. Find the equations of the generators of the hyperboloid $x^2 y^2 = 2z$ which pass through the point (5,3,8).
- 8. Solve: $\frac{dy}{dx} + \frac{y}{x} \ln y = \frac{y}{x^2} (\ln y)^2$.